Introduction to Design of Experiments (DoE): work smarter, work cheaper

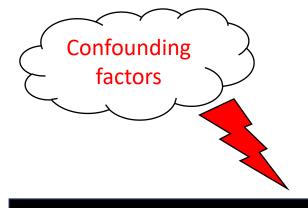
What is an experimental domain

Factors

[Insulin]

Temperature

[siRNA]


FBS batch

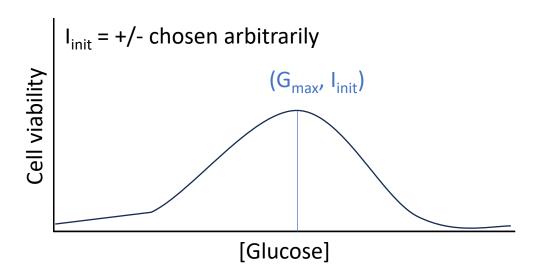
Cell type

Time

Bacteria sp.

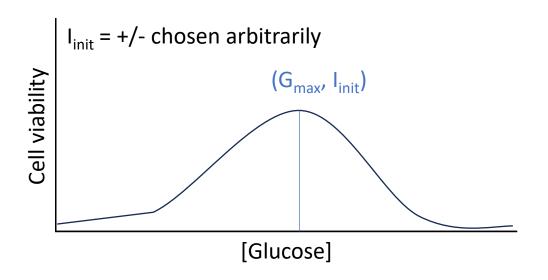
Experimental domain

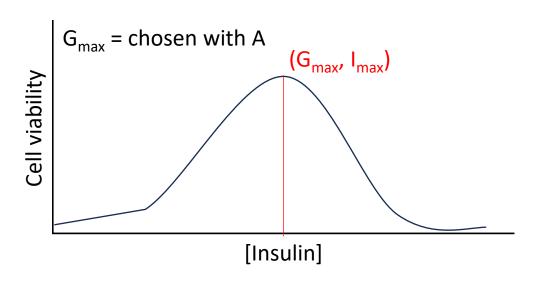
Experiment


Experimental unit

- 1 group of SD Rat
- 3 wells of differentiated HepaRG
- 1 petri dish containing Salmonella colonies
- .

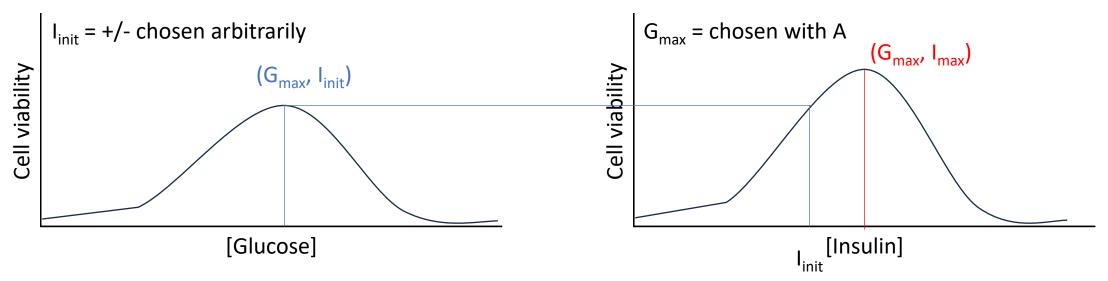
Responses


- Bacterial growth
- Glucose curve nadir
- PPARα gene expression
- Cell viability
- •



A. Dose-response to [Glucose], [Insulin] fixed at I_{init} 8 measures

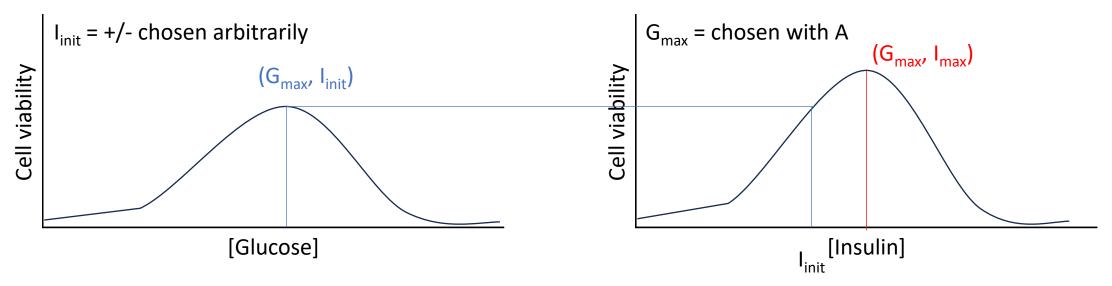
A : Viability is optimal at \underline{G}_{max} in initial [Insulin] condition (I_{init})



A. Dose-response to [Glucose], [Insulin] fixed at I_{init} 8 measures

B. Dose-response to [Insulin], [Glucose] fixed at G_{max} 8 measures

A : Viability is optimal at \underline{G}_{max} in initial [Insulin] condition (I_{init})

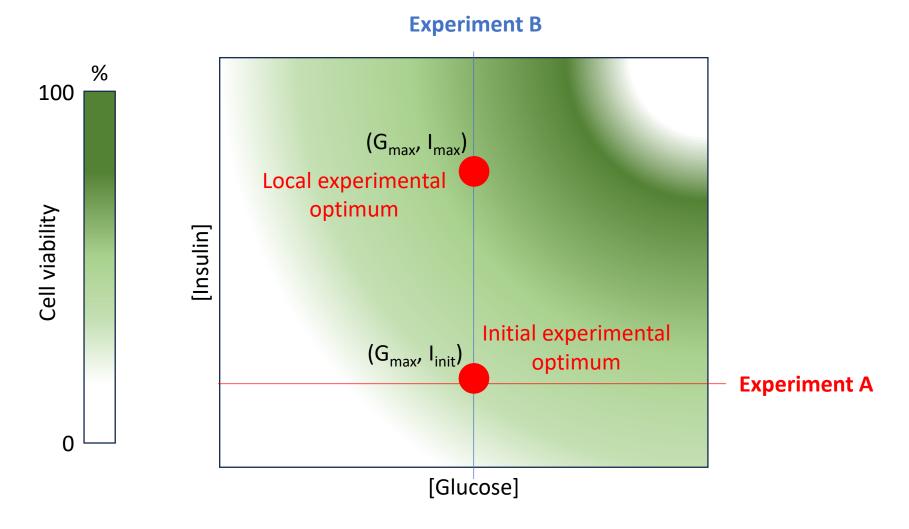


A. Dose-response to [Glucose], [Insulin] fixed at I_{init} 8 measures

B. Dose-response to [Insulin], [Glucose] fixed at G_{max} 8 measures

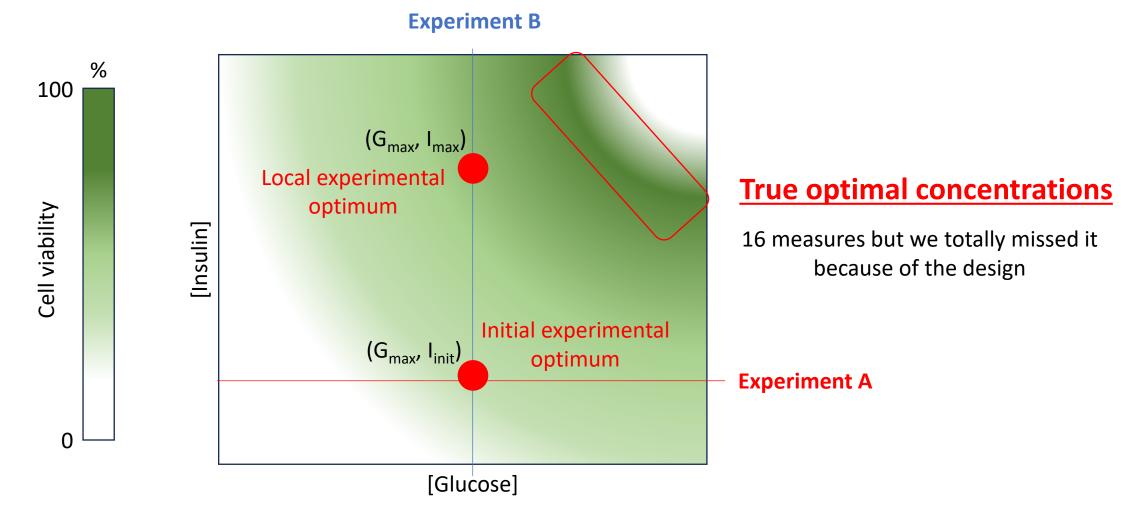
A : Viability is optimal at \underline{G}_{max} in initial [Insulin] condition (I_{init})

B : When we change [Insulin] at G_{max} , viability is not optimal at I_{init} .


A. Dose-response to [Glucose], [Insulin] fixed at I_{init} 8 measures B. Dose-response to [Insulin], [Glucose] fixed at G_{max} 8 measures

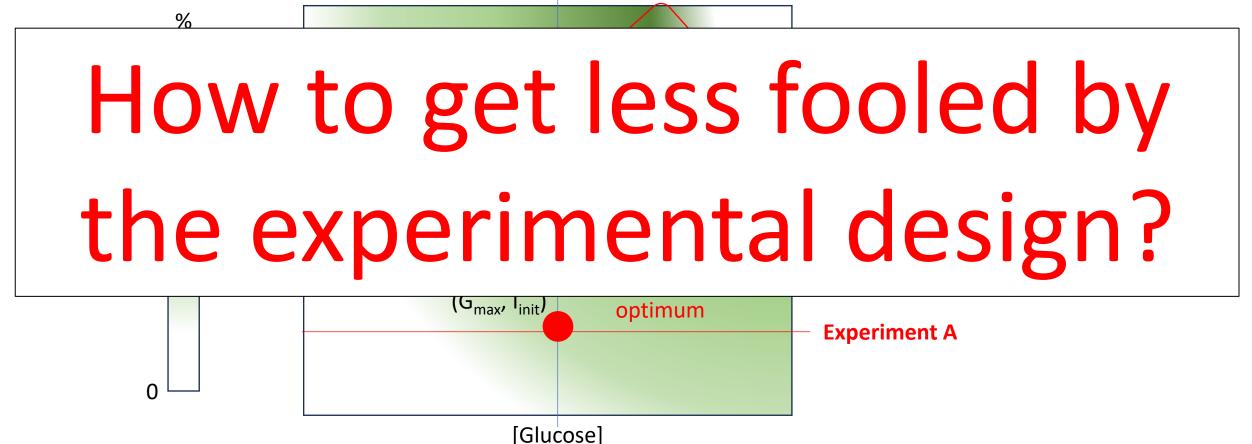
A : Viability is optimal at \underline{G}_{max} in initial [Insulin] condition (I_{init})

B: When we change [Insulin] at G_{max} , viability is not optimal at I_{init} .


 \rightarrow Is the new optimum (G_{max}, I_{max}) really the optimal condition?

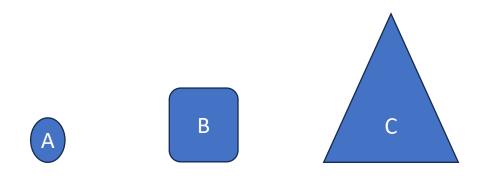
Caveats of "one factor at a time" approach

Cartoon surface response of cell viability


Caveats of "one factor at a time" approach

Cartoon surface response of cell viability

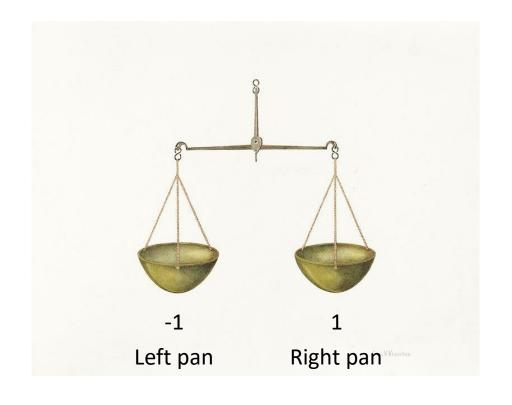
Caveats of "one factor at a time" approach


Experiment B

Cartoon surface response of cell viability

Design of experiments interest: Yates pan balance

Yates pan balance: a classic example



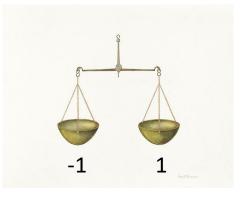
What is the weight of A, B, and C? Which is the heaviest?

Precision must be very low (error = \pm /- 1 g)

Empty balance does not show 0 g

Budget: 800 € (100 €/measure)

0 = not on balance


Yates pan balance: 1st strategy "kitchen"

 1^{st} strategy: only one measure per object, one object at a time (n=1)

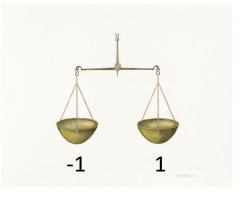
N°	Left pan	Right pan	Y (masse)
1	-	-	1 g
2	-	Α	3 g
3	-	В	4 g
4	-	С	10 g

Yates pan balance: 1st strategy "kitchen"

N°	0 = cte	Α	В	С
1	1	0	0	0
2	1	1	0	0
3	1	0	1	0
4	1	0	0	1

Y (masse)
1 g
3 g
4 g
10 g

$$M_0 = Y1$$


$$M_0 + M_A = Y2$$

$$M_0 + M_B = Y3$$

$$M_0 + M_C = Y4$$

$$M_A = 3-1 = 2 g$$

 $M_B = 4-1 = 3 g$
 $M_C = 10-1 = 9 g$

Yates pan balance: 1st strategy "kitchen"

N°	0 = cte	Α	В	С
1	1	0	0	0
2	1	1	0	0
3	1	0	1	0
4	1	0	0	1

Y (masse)
1 g
3 g
4 g
10 g

$$M_0 = Y1$$

$$M_0 + M_A = Y2$$

$$M_0 + M_B = Y3$$

$$M_0 + M_C = Y4$$

$$M_A = 3-1 = 2 g$$

 $M_B = 4-1 = 3 g$
 $M_C = 10-1 = 9 g$

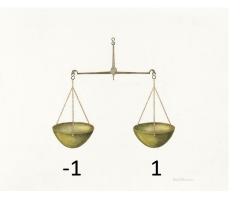
$$V(X-Y) = V(X) + V(Y) - 2 * cov(X,Y)$$

$$V(aX-b) = a^2 * V(X)$$

$$V(M_0) = V(Y1) = \sigma^2$$

$$V(M_A) = V(Y1) + V(Y2) = 2\sigma^2$$

Very inaccurate measure, price = 400 €


Can we be more accurate?

Measure more times!

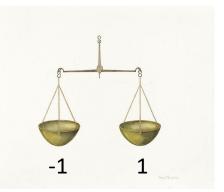
 2^{nd} strategy: two measures per object, one object at a time (n=2)

Left pan	Right pan
-	-
-	Α
-	В
-	С
-	-
-	А
-	В
-	С

N°	0 = cte	Α	В	С
1	1	0	0	0
2	1	1	0	0
3	1	0	1	0
4	1	0	0	1
1'	1	0	0	0
2′	1	1	0	0
3'	1	0	1	0
4'	1	0	0	1

Moy (Y) (masse)
1 g
3 g
4 g
10 g

$$M_{0} = \frac{Y1 + Y1'}{2}$$


$$M_{0} + M_{A} = \frac{Y2 + Y2'}{2}$$

$$M_{0} + M_{B} = \frac{Y3 + Y3'}{2}$$

$$M_{0} + M_{B} = \frac{Y3 + Y3'}{2}$$

$$M_{0} + M_{C} = \frac{Y4 + Y4'}{2}$$

$$M_A = 3-1 = 2 g$$

 $M_B = 4-1 = 3 g$
 $M_C = 10-1 = 9 g$

0 = cte	Α	В	С
1	0	0	0
1	1	0	0
1	0	1	0
1	0	0	1
1	0	0	0
1	1	0	0
1	0	1	0
1	0	0	1
	1 1 1 1 1 1	1 0 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 0	1 0 0 1 1 0 1 0 1 1 0 0 1 0 0 1 1 0 1 0 1

Moy (Y)
(masse)
1 g
3 g
4 g
10 g

$$M_{0} = \frac{Y1 + Y1'}{2}$$

$$M_{0} + M_{A} = \frac{Y2 + Y2'}{2}$$

$$M_{0} + M_{B} = \frac{Y3 + Y3'}{2}$$

$$M_{0} + M_{C} = \frac{Y4 + Y4'}{2}$$

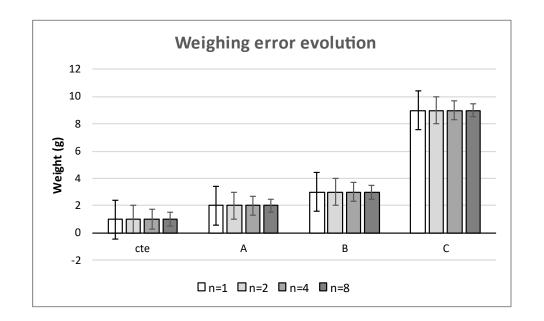
$$M_{0} + M_{C} = \frac{Y4 + Y4'}{2}$$

$$M_A = 3-1 = 2 g$$

 $M_B = 4-1 = 3 g$
 $M_C = 10-1 = 9 g$

$$V(X-Y) = V(X) + V(Y) - 2 * cov(X,Y)$$

 $V(aX-b) = a^2 * V(X)$


$$V(M_0) = \frac{V(Y1) + V(Y1')}{2^2} = \sigma^2/2$$

$$V(M_A) = \frac{V(Y2) + V(Y2')}{2^2} + V(M_0) = \sigma^2$$

Less inaccurate measure, price = 800 €

Measures numbers	4 (n=1)	8 (n=2)	16 (n=4)	32 (n=8)
V(M _A)	$2 \sigma^2$	σ^2	σ²/2	σ²/4
Price	400 €	800€	1600€	3200€

Can we do the same for cheaper?

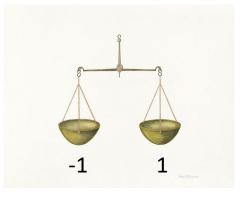
Measure smarter!

Yates pan balance: 3rd strategy "Smart"

3rd strategy: Measure each object 2 times by pairs, ("n"=2)

N°	Left pan	Right pan	Y (masse)
1	-	-	Y1
2	-	A + B	Y2
3	-	A + C	Y3
4	-	B + C	Y4

Yates pan balance: 3rd strategy "Smart"


N°	0 = cte	Α	В	С
1	1	0	0	0
2	1	1	1	0
3	1	1	0	1
4	1	0	1	1

Y (masse)
1 g
6 g
12 g
13 g

$$M_0 = Y1$$
 $M_0 + M_A + M_B = Y2$
 $M_0 + M_A + M_C = Y3$
 $M_0 + M_B + M_C = Y4$

$$M_A$$
= (Y2+Y3-Y4-Y1)/2 = 2 g
 M_B = (Y2+Y4-Y3-Y1)/2 = 3 g
 M_C = (Y4+Y3-Y2-Y1)/2 = 9 g

Yates pan balance: 3rd strategy "Smart"

N°	0 = cte	Α	В	С
1	1	0	0	0
2	1	1	1	0
3	1	1	0	1
4	1	0	1	1

Y (masse)
1 g
6 g
12 g
13 g

$$M_0 = Y1$$
 $M_0 + M_A + M_B = Y2$
 $M_0 + M_A + M_C = Y3$
 $M_0 + M_B + M_C = Y4$

$$M_A$$
= (Y2+Y3-Y4-Y1)/2 = 2 g
 M_B = (Y2+Y4-Y3-Y1)/2 = 3 g
 M_C = (Y4+Y3-Y2-Y1)/2 = 9 g

$$V(X-Y) = V(X) + V(Y) - 2 * cov(X,Y)$$

 $V(aX-b) = a^2 * V(X)$

$$V(M_0) = V(Y1) = \sigma^2$$


$$V(M_A) = \frac{V(Y2) + V(Y3) + V(Y4) + V(Y1)}{2^2} = \sigma^2$$

As inaccurate as before, price = 400 €

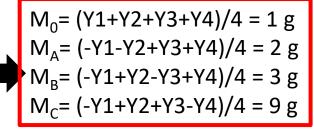
Can we be more accurate AND cheaper?

Measure smarter-er!

Yates pan balance: 4th strategy "smarter"

4th strategy: Measure each object 4 times in 3-tuples ("n" = 4)

N°	Left pan	Right pan
1	A + B + C	-
2	А	B + C
3	В	A + C
4	С	A + B


Y (masse)
Y1
Y2
Y3
Y4

Yates pan balance: 4th strategy "smarter"

N°	0 = cte	Α	В	С
1	1	-1	-1	-1
2	1	-1	1	1
3	1	1	-1	1
4	1	1	1	-1

Y (masse)	
-13 g	$M_0 - M_A - M_B - M_C = Y1$ $M_0 - M_A + M_B + M_C = Y2$ $M_0 + M_A - M_B + M_C = Y3$ $M_0 + M_A + M_B - M_C = Y4$
11 g	$M_0 - M_A + M_B + M_C = Y2$
9 g	$M_0 + M_A - M_B + M_C = Y3$
-3 g	$\bigcup_{M_0 + M_\Delta + M_B - M_C = Y4}$
	0 / B C

Yates pan balance: 4th strategy "smarter"

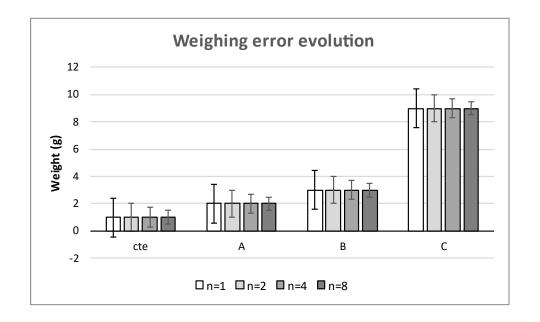
N°	0 = cte	Α	В	С
1	1	-1	-1	-1
2	1	-1	1	1
3	1	1	-1	1
4	1	1	1	-1

Y (masse)	
-13 g	$M_0 - M_A - M_B - M_C = Y1$
11 g	$M_0 - M_A + M_B + M_C = Y2$ $M_0 + M_A - M_B + M_C = Y3$ $M_0 + M_A + M_B - M_C = Y4$
9 g	$M_0 + M_A - M_B + M_C = Y3$
-3 g	$M_0 + M_A + M_B - M_C = Y4$
	O A SERVICES

$$M_0$$
= (Y1+Y2+Y3+Y4)/4 = 1 g
 M_A = (-Y1-Y2+Y3+Y4)/4 = 2 g
 M_B = (-Y1+Y2-Y3+Y4)/4 = 3 g
 M_C = (-Y1+Y2+Y3-Y4)/4 = 9 g

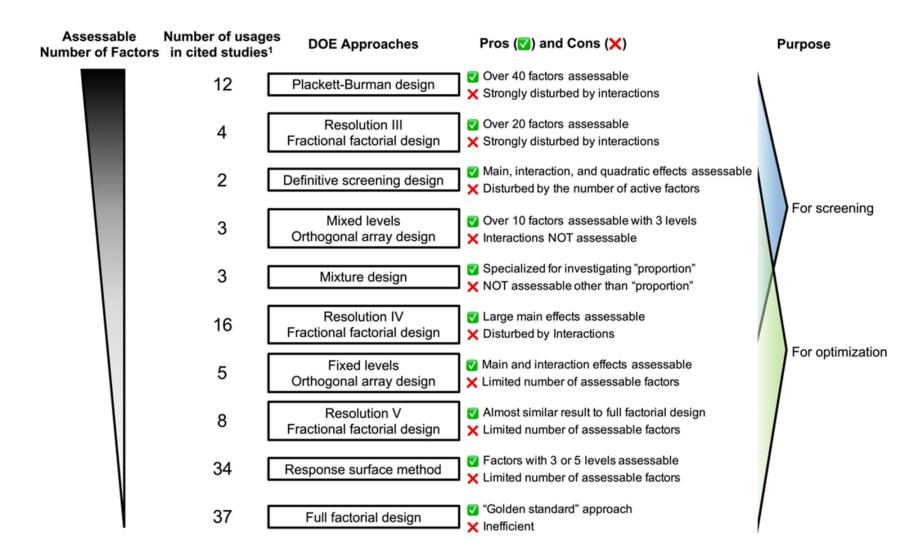
$$V(X-Y) = V(X) + V(Y) - 2 * cov(X,Y)$$

 $V(aX-b) = a^2 * V(X)$


$$V(M_0) = \frac{V(Y1) + V(Y2) + V(Y3) + V(Y4)}{4^2} = \sigma^2/4$$

$$V(M_A) = \frac{V(Y2) + V(Y3) + V(Y4) + V(Y1)}{4^2} = \sigma^2/4$$

Least inaccurate measure, price = 400 €


Measures numbers	4 (n=1)	8 (n=2)	16 (n=4)	32 (n=8)	4th strategy: 4 ("n"=4)
V(M _A)	$2 \sigma^2$	σ^2	σ²/2	σ²/4	σ²/4
Price	400€	800€	1600€	3200 €	400 €

What if I think my factors interact with each other or I have a lot of factors?

→ Choose the good plan

How to choose your DoE?

https://doi.org/10.3390/ cells10123540

Resources

DEFINITIVE SCREENING IN THE PRESENCE OF SECOND-ORDER EFFECTS

m	= 4	1	n = 5		m = 6			m = 7			m = 8
1	0+	1	0++	1	0+		1	0+-+-+-		1	0-++-++
2	0-++	2	0++	2	0-+++		2	0-+-+-+		2	0++
3	-0-+	3	+0+	3	+0-++		3	-0+-++-		3	-0-+++-
4	+0+-	4	-0++-	4	-0+		4	+0-++		4	+0++
5	0-	5	+-0+-	5	0+		5	+-0++++		5	0+++
6	++0+	6	-+0-+	6	++0-++		6	-+0		6	++0++-
7	-++0	7	+-+0+	7	-++0+-		7	+0+		7	+-+0++
8	+0	8	-+-0-	8	+0-		8	-++0-++		8	-+-0++
9	0000	9	++++0	9	+-+-0-		9	++0		9	+-0-+-
		10	0	10	-+-+0+		10	++0++		10	++-+0+-+
		11	00000	11	++++-()	11	-+-++0+		11	++0++
				12	+0)	12	+-+0-		12	-+++-0
				13	000000	,	13	+++++-0		13	-++-++0+
				1000			14	+0		14	++0-
							15	0000000			+++++-+0
											+-0
										17	00000000
	n =	9		m = 10	0		m :	= 11			m = 12
1	0+++++		1 0)++-+++		1	0-4-	+-+	1	0	+-+-++-
2	0)+		2	70000	+++-+-	2		-+-++
3	+0+-+-			0-++-+-		3	T. C	+	3	-	+++++
4	-0-+-+			0++		4		****	4	- /50	
5	-+0-+-			+0+		5		++++	5		-++-+-+
6	+-0+-+			0+++		6		+++-	6		+++-
7	+0+-	0.757510	-	++0+		7		-++-++-	7		0+-+-+
8	++-0-+		7	0-++-		8			8		0-+-+-++
9	+-+-0+			0++-		9		0+-+++	9		+0-++++
-	-+-+0-			+++0		-		0-+	10		-0+
	+0	1000	-	+-++0+-			C	-0-+-+-			-+0++-+-
	++++-0		77.75	-+0		-		+0+-+-+	12		+-0+-+
	++++		-	+0-		13		+-0++	13		+-+0
	++			-++++0-				+0++			-+-0++++
	+++			+++-++				+0+++			++0+
	+++			+(++-0			++0++-
11.00	-+++	0.500		+++-	0.000			-+-+0-+		- 70.50	+++0++
-	+++-		70.000	-+++	U-000	77.7		+-+-0+-	10770		++0
	000000		77.500	-+-+-+				++-0+			+++-0
	000000	000		+-+-+-	0.9.50	77.70		+++0-	7 TO TO		++-+0+
				00000000	5 - A T S S S S S S S S S S S S S S S S S S	77.00		0		-	+++++0
			21 (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	700			+++++0			++-0
								0000000	23		+-++++
						-3	3000		100000		-++-
											00000000
									25	000	00000000

FIGURE 1. Designs for m = 4 Through m = 12 Factors.

B. Jones and C. J. Nachtsheim, 2011, Journal of Quality Technology 43(1):1